Мутагенез
Содержание:
- Отличие наследственной изменчивости от модификационной
- Дополнительно
- Учебник Биология — ВУНМЦ 2000
- Адаптивная ценность
- Мутация генов
- Генные мутации
- Мутагенные факторы
- Значение мутационного процесса
- Геномная мутация
- Выявление источников мутагенов в окружающей среде (косвенно) и оценка возможных последствий их влияния на собственный организм
- Положительный эффект
- 2.1 Влияние ионизирующего облучения на живой организм
- Что такое мутация?
- Хромосомные мутации
- Химический мутагенез
- ссылки
- У человека была измерена частота мутаций
Отличие наследственной изменчивости от модификационной
В отличие от ненаследственной (модификационной, или фенотипической) изменчивости мутации:
- передаются по наследству;
- устойчивы;
- могут быть как вредными, так и полезными;
- возникают внезапно, не развиваются постепенно, не имеют непрерывных рядов изменчивости и нормы реакции;
- ненаправлены (неопределённы) – могут возникать в генах, хромосомах и геноме. Нельзя предсказать, где и когда они появятся и к каким последствиям для организма приведут. Однако есть закономерность в сходном характере наследственной изменчивости у генетически близких видов и родов (см. закон гомологических рядов наследственной изменчивости Н.И. Вавилова);
- проявляются индивидуально, не нося массового характера;
- одинаковые или близкие мутации могут возникать многократно.
Дополнительно
Гетерозиготное состояние, диплоидный генотип, «молчащая ДНК» – все это ловушки для мутаций. При вырожденности генетического кода редкости возникновения трансформаций говорят о репарации. Мутационные процессы должны возникать у существующих живых организмов с определенной частотой. Она должна быть достаточной для того, чтобы вызывать изменения, посредством которых популяции выводились бы на новый уровень. Мутации обнаруживаются в различных концентрациях. Часть из них должна участвовать в историческом процессе развития живых организмов, способствуя формированию новых таксонов. Мутации, как правило, появляются без переходов, дискретно и скачкообразно. Появившееся однажды изменение устойчиво. Оно передается потомкам. Мутации возникают не направленно. Одно и то же изменение способно повторяться неоднократно.
Учебник Биология — ВУНМЦ 2000
4.11. МУТАГЕННЫЕ ФАКТОРЫ
Любые мутации могут возникнуть спонтанно или быть индуцированными. Спонтанные мутации появляются под влиянием неизвестных природных факторов и приводят к ошибкам при репликации ДНК.
Индуцированные мутации возникают под воздействием специальных направленных факторов, повышающих мутационный процесс.
Мутагенным действием обладают факторы физической, химической и биологической природы.
Среди физических мутагенов наиболее сильное мутантное действие оказывает ионизирующая радиация — рентгеновские лучи, α-, β-, γ-лучи. Обладая большой проникающей способностью, при действии на организм они вызывают образование свободных радикалов ОН или НО2 из воды, находящейся в тканях. Эти радикалы обладают высокой реакционной способностью. Они могут расщеплять нуклеиновые кислоты и другие органические вещества.
Облучение вызывает как генные, так и хромосомные перестройки.
Ультрафиолетовое излучение характеризуется меньшей энергией, не вызывающей ионизацию тканей. Действие УФ-излучения приводит к образованию тимидиновых димеров. Присутствие димеров в ДНК приводит к ошибкам при ее репликации.
Химические мутагены должны обладать следующими качествами:
• высокой проникающей способностью;
• свойством изменять коллоидное состояние хромосом;
• определенным действием на состояние хромосомы или гена. К химическим веществам, вызывающим мутации, можно отнести органические и неорганические вещества, такие, как кислоты, щелочи, перекиси, соли металлов, формальдегид, пестициды, дефолианты, гербициды, колхицин и др.
Некоторые вещества способны усиливать мутационный эффект в сотни раз по сравнению со спонтанным. Их называют супермутагенами. Эти супермутагены вызывают широкий спектр точковых мутаций в концентрациях меньше тех, которые индуцируют хромосомные перестройки, видимые под микроскопом. Супермутагенной активностью обладают нитрозосоединения (иприт, диэтилнитрозамин, уретан и др.).
Некоторые лекарственные препараты также обладают мутагенным эффектом. Например, цитостатики, производные этиленимина, нитрозомочевина. Они повреждают ДНК в процессе репликации.
Химические мутагены могут вызывать нарушение мейоза, приводящее к нерасхождению хромосом, разрыву хромосом, точковым мутациям. Некоторые химические мутагены проходят через метаболическую систему организма самыми непредсказуемыми путями, превращаются в другие соединения. При этом они могут потерять свою мутагенную активность, или приобрести такие мутагенные свойства, которые отсутствовали у исходного соединения. Некоторые немутагенные химические вещества, включившись в обмен веществ, превращаются в мутагены. Например, цитостатик — циклофосфамид — не мутаген, но в организме млекопитающих превращается в высокомутагенное соединение.
Кроме мутагенов физической и химической природы, в окружающей среде имеются биологические факторы мутагенеза.
Вирусы оспы, кори, ветряной оспы, эпидемического паротита, гепатита, краснухи и др. способны вызывать разрывы хромосом. Вирусы могут усиливать темпы мутации клеток хозяина за счет подавления активности репарационных систем. Есть данные о возрастании числа хромосомных перестроек в клетках человека после пандемий, вызванных вирулентными вирусами.
Возникновение мутаций приводит к различным патологиям. Для предотвращения негативных последствий, связанных с действием различных мутагенных факторов среды, проводят мероприятия, снижающие вероятность возникновения мутаций. С этой целью используют вещества, называемые антимутагенными. В настоящее время выделено около 200 природных и синтетических соединений, обладающих антимутагенной активностью. Это аминокислоты (гистидин, метионин и др.), витамины (токоферол, каротин, ретинол, аскорбиновая кислота и др.), ферменты (оксидаза, каталаза и др.), интерферон и др.
Потребляемая пища содержит большое количество мутагенов и антимутагенов. Их соотношение зависит от способов обработки пищи, сроков ее хранения и т.д. Правильное питание — один из путей предотвращения вредного воздействия мутагенных факторов среды.
ПредыдущаяСледующая
Адаптивная ценность
Большая часть новых мутантов отличается существенно низкой жизнеспособностью, чем дикий/нормальный тип. При этом она выражается в различной степени: от субвитального едва заметного до полулетального и летального состояния. При анализе жизнеспособности мутантов мухи дрозофилы, появившихся при изменениях в Х-хромосоме, у 90% особей она была ниже, чем у нормальных. У 10% отмечалось супервитальное состояние – повышенная жизнеспособность. В целом же адаптивная ценность появившихся мутантов, как правило, понижена. Она характеризуется функциональной полезностью морфологических признаков и плодовитостью, физиологической жизнеспособностью.
Мутация генов
Генные мутации – это наиболее распространённый тип наследственной изменчивости, они связаны с деформацией первичной структуры ДНК в пределах одного гена, происходят на молекулярном уровне организации живого. Возникают они в процессе удвоения ДНК. Происходит это нечасто, примерно одна мутация на 10-100 тыс. копий. Но в генотипах они постепенно накапливаются, создавая разнообразие всего живого. Именно благодаря таким мутациям возникли разные аллели одного гена.
Мутация, при которой изменяется одна пара оснований, называется точечной или однонуклеотидной. Нуклеотид может быть заменён на другой, добавлен или удалён.
Мутация: замена азотистых оснований
Замена одной пары оснований в ДНК на другую называется мутацией замещения. Из-за вырожденной природы генетического кода замена основания может не привести к замещению закодированной аминокислоты. Если окажется, что новый триплет кодирует ту же аминокислоту, то мутация будет молчащей.
Часто при замене основания меняется кодируемая аминокислота в белке, получаемом при транскирипции мутантного гена. Замены делятся на две группы:
- транзакции;
- трансверсии.
Транзакция не заменяет типа оснований в гене, пиримидин замещается пиримидином, а пурин – пурином. Напротив, трансверсия изменяет тип оснований в паре (приримидин – пурин). Различные заболевания вызваны трансверсией, в том числе серповидно-клеточная анемия.
Бессмысленные (нонсенс-мутации)
Особая категория замены оснований вызывает смену транскрибируемого (кодирующего белок) кодона в стоп-кодон. Он приводит к преждевременному прекращению трансляции и к усечению белка. Насколько коротким получится белок зависит от того, где в гене установится стоп-кодон.
Может быть и наоборот, когда стоп-кодон в результате мутации становится активным геном и способствует синтезированию необычно длинных молекул белка.
Мутация сдвига рамки считывания
Добавление или удаление пары комплементарных оснований имеет гораздо большие последствия, чем замена одного основания на другое. Такие нарушения сдвигают рамки считывания в мРНК ниже от мутации. Это связано с тем, что считывание информации происходит триплетами без знаков препинания внутри тройки. Обычно такие мутации приводят к полному выключению функционирования гена. Этот тип деформаций был использован Криком и Бреннером для того, чтобы сделать вывод о триплетной природе генетического кода.
Изменение рамки считывания в гене на ранней стадии означает изменение части белка. Смена кадров также может привести к преждевременному завершению транскрипции, так как 3 из 64 кодонов являются стоп-кодонами.
Генная мутация: удвоение триплета
Учитывая долгую историю молекулярной генетики и относительно короткое время молекулярного анализа у человека, удивительно, что новый вид мутации был обнаружен у людей.
Один из первых генов, связанных с нарушением у человека – болезни Хантингтона – был мутантным. При этом ген, кодирующий белок хантингтин, содержит повторяющийся триплет. Болезнь Хантингтона — дегенеративное расстройство нервной системы, которое приводит к совершению неконтролируемых движений, утрате интеллектуальных способностей и эмоциональному возбуждению. При болезни Хантингтона белок, кодируемый мутировавшим геном, убивает нервные клетки в определённых частях мозга, следствием чего становится гибель нервов, которые регулируют движения.
Болезнь Хантингтона обнаруживается во взрослом возрасте (в то время как остальные генетически обусловленные болезни обычно проявляются в детстве), и поэтому те, кто болен ею, часто успевают произвести на свет детей. Мутация гена, обуславливающая болезнь Хантингтона, передается как через мужские, так и через женские хромосомы, и поэтому существует очень большая вероятность, что ребёнок обязательно унаследует заболевание от больного родителя.
Теперь известно не менее 20 заболеваний, связанных с такой мутацией. Такой тип аномалий пока был найден только у людей и мышей. Предполагают, что он характерен только для позвоночных или даже исключительно для млекопитающих. Например, у дрозофилы её не обнаруживали никогда.
Расширение триплета может происходить в области кодирования или транскрибирования. В случае болезни Хантингтона единица повтора находится в кодирующей области триплета, кодирующего глутамин, и расширение приводит к полиглутаминовой области в белке. В случае синдрома Мартина-Белла наследственная форма умственной отсталости вызвана повтором в некодирующей части ДНК.
Генные мутации
Они представляют собой трансформацию последовательности нуклеотидов. Мутационный процесс в этом случае изменяет характер действия гена. Обычно имеет место молекулярная трансформация, вызывающая фенотипический эффект. Предположим, что в определенном гене в конкретной точке кодов есть ЦТТ, кодирующий глутаминовую кислоту. При замене только одного нуклеотида он может превратиться в кодон ГТТ. Он будет участвовать в синтезе не глутаминовой кислоты, а глутамина. Исходная и мутантная белковые молекулы отличаются, и, вероятно, это повлечет вторичные различия фенотипического характера. Точная репликация нового аллеля будет происходить до момента, пока не случится новое изменение. При генной мутации таким образом возникает серия или пара гомологичных элементов. Можно сделать и обратный вывод. Наличие аллельной изменчивости по тому или иному гену означает, что он в определенное время подвергался мутации.
Мутагенные факторы
Подавляющее число мутаций неблагоприятно или даже смертельно для организма, так как они разрушают отрегулированный на протяжении миллионов лет естественного отбора целостный генотип. Однако мутации возникают постоянно, и способностью мутировать обладают все живые организмы. У каждой мутации есть какая-то причина, хотя в большинстве случаев мы не можем ее определить. Однако число мутаций можно резко увеличить, воздействуя на организм так называемыми мутагенными факторами.
К мутагенным факторам относят некоторые физические воздействия на организм.
Сильнейшим мутагеном является ионизирующее излучение — электромагнитные волны с маленькой длиной волны, но с очень высокой энергией квантов. Такие кванты проникают в ткани организма, повреждая различные молекулы, и, в частности, молекулы ДНК.
Ультрафиолетовое излучение также относится к коротковолновым, но его кванты не проникают глубоко и разрушают только поверхностные слои тканей. Вот почему светлокожим людям нельзя долго находиться летом на солнце — это приводит к увеличению риска возникновения рака и некоторых других заболеваний.
Мутагенным фактором также является повышенная температура. Например, при выращивании мушек-дрозофил при температуре на 10 °С выше обычной число мутаций увеличивается втрое.
Сильнейшим мутагенным действием обладают соединения из многих классов химических веществ. Например, мутации вызывают соли свинца и ртути, формалин, хлороформ, препараты для борьбы с сельскохозяйственными вредителями. Некоторые красители из класса акридинов приводят к делециям и транслокациям в процессе репликации ДНК.
Относительно недавно выяснилось, что причиной мутаций могут быть вирусы. Размножаясь в клетках хозяина, вирусные частицы встраивают «хозяйские» гены в свою ДНК, а при заражении следующей клетки вносят в нее чужеродные гены.
Из сказанного становится ясным, как важно, чтобы в жизни нас окружало как можно меньше факторов, вызывающих мутации. Мутации возникают часто
У человека 2—10% гамет имеют те или иные мутации, хотя, к счастью для нас, в подавляющем большинстве случаев они рецессивны и в дальнейшем не проявляются в фенотипе.
Как же организмы борются за сохранение своего генотипа, защищаясь от действия мутагенных факторов?
Оказывается, если в клетке при репликации ДНК возникает мутация, например замыкается «неправильная» связь между азотистыми основаниями соседних нуклеотидов одной нити ДНК, то специальные ферменты опознают мутантный участок ДНК и вырезают его. Затем другие ферменты достраивают фрагмент ДНК без «ошибок», используя как матрицу немутировавшую цепочку ДНК, и встраивают «правильный» фрагмент на место удаленного мутантного участка.
Итак, мутационная изменчивость имеет следующие основные характеристики:
- мутационные изменения возникают непредсказуемо, и в результате в организме могут появиться новые свойства;
- мутации наследуются и передаются потомству;
- мутации не имеют направленного характера, т. е. нельзя достоверно утверждать, какой именно ген мутирует под действием данного мутагенного фактора;
- мутации могут быть полезными или вредными для организма, доминантными или рецессивными.
Значение мутационного процесса
Важность обуславливается тем, что при постоянном возникновении спонтанных изменений и их сочетаний при скрещивании возникают новые комбинации генов и трансформаций. Это, в свою очередь, неизбежно приводит к наследственным корректировкам в популяции
Роль мутационного процесса состоит в повышении генетической гетерогенности. Вместе с тем без участия прочих факторов он не в состоянии направлять трансформацию природной популяции.
Мутационный процесс – источник элементарного материала, резерва изменчивости. Появление трансформаций обладает статистическим и вероятностным характером. Эволюционное значение процесса заключается в поддержании высокой гетерогенности природных популяций, участии в формировании разнообразных аллелей и возникновении новых генов. Мутационный процесс создает полный спектр изменчивости конкретного генофонда. При своем постоянном течении он обладает ненаправленным и случайным характером.
Геномная мутация
Геномные мутации связаны с изменением числа хромосом.
Полиплоидия – вид геномной мутации, связанный с увеличением хромосомного набора. У полиплоидов гаплоидный (n) набор хромосом повторяется не два раза, как у диплоидов, а три, четыре или более. Возникновение такого вида мутации связано с нарушением митоза или мейоза.
Полиплоидия часто встречается среди растений, у животных она тоже может быть, но встречается крайне редко. Растения-полиплоиды с кратным увеличением набора (4n, 6n, 8n и т. д.) отличаются крупными размерами, объёмными плодами, что делает их ценными продуктами питания и незаменимыми объектами для селекции. Организмы с некратным набором хромосом из-за нарушения мейоза (3n, 5n …) наоборот становятся малоплодовитыми. Некоторые виды, например пшеница, иногда могут мутировать с образованием гаплоидного набора, такие растения не способны размножаться половым путём.
Полиплоидия
Полиплоиды у которых повторяется собственный генотип называют автополиплоидами, а возникшие в результате межвидовой гибридизации (с разными наборами хромосом) – аллополиплоидами.
Гетероплоидия, или анеуплоидия – изменение числа хромосом, некратное гаплоидному набору. Трисомия – набор 2n+1, возникает в случае нерасхождения пары гомологичных хромосом, они отходят в гамету вместе. Другая же гамета наоборот будет лишена этой хромосомы и её генотип будет 2n-1 – моносомия. Например, люди с синдромом Дауна трисомики с лишней 21-й хромосомой. Анеуплоидия по большему числу хромосом встречается очень редко. Хотя при таком нарушении присутствуют все гены, иногда совместная работа лишнего числа аллелей приводит к несовместимым с жизнью эффектам.
Синдром Кляйнфельтера, являющийся причиной мужской импотенции, обусловлен тем, что у мужчины появляется лишняя хромосома X. Синдром Тернера – отсутствие у женщины внешних женских признаков – связан с наличием лишь одной хромосомы X вместо положенных двух.
Выявление источников мутагенов в окружающей среде (косвенно) и оценка возможных последствий их влияния на собственный организм
Источники мутагенов способны оказывать косвенное влияние на окружающую среду и здоровье человека. Рассмотрим основные категории данных опасных соединений и особенности их воздействия:
В быту | Выраженной мутагенностью обладают красители для волос, бытовая химия и отдельные продукты питания. Для защиты организма от этих веществ необходимо меньше употреблять в пищу «сомнительных» продуктов питания, а моющие средства использовать в перчатках. |
На производстве | Мутагенное воздействие на производстве способно проникать в человеческий организм посредством пищеварительного тракта, кожи и легких. Наиболее опасными признаны следующие соединения: стирол, эпоксидные смолы, эпихлоргидрин, хлоропрен и винилхлорид. Поэтому люди, работающие с такими веществами, одевают специальные средства защиты и раньше уходят на заслуженный отдых. |
Смотри также:
- Виды мутаций и их причины. Значение изменчивости в жизни организмов и в эволюции
- Значение генетики для медицины. Наследственные болезни человека, их причины, профилактика
- Селекция, ее задачи и практическое значение
Положительный эффект
За счет присутствия мутантных аллелей в генофонде в гетерозиготном генотипе исключается непосредственное негативное влияние на фенотипическое выражение того признака, который контролируется данным геном.
За счет гибридной мощности (гетерозиса) многие мутации в гетерозиготном состоянии зачастую способствуют повышению жизнеспособности организма.
Посредством сохранения аллелей, которые не обладают приспособительной ценностью в настоящей среде существования, но способны ее приобрести или в будущем, или при освоении других экологических ниш, формируется резерв изменчивости.
2.1 Влияние ионизирующего облучения на живой организм
Мутациипри действии физических мутагенов
возникают так же, как и при действии
мутагенов химических. Вначале возникает
первичное повреждениеДНК.
Если оно не будет полностью исправлено
в результатерепарации,
то при последующем репликативном синтезеДНКбудут возникатьмутации.
Спецификамутагенеза(процесса возникновениямутаций)
при действии физических факторов связана
с характером первичных поврежденийгенома,
вызываемых ими.
Ионизирующее
излучение
– это поток заряженных или нейтральных
частиц и квантов электромагнитного
излучения, прохождение которых через
вещество приводит к ионизации и
возбуждению атомов или молекул среды.
Ионизирующее
излучение может вызвать мутации –
внезапные естественные или вызванные
искусственно наследуемые изменения
генетического материала, приводящие к
изменению тех или иных признаков
организма.
Есть
мутации спонтанные
,
возникающие под влиянием природных
факторов внешней среды или в результате
биохимических изменений в самом
организме, и индуцированные
,
возникающие под воздействием мутагенных
факторов, например, ионизирующего
излучения химических веществ.
Мутации
могут быть прямыми
,
если их проявление приводит к отклонению
от признаков так называемого дикого
типа и обратными
,
если они приводят к восстановлению
дикого типа.
Мутации
в половых клетках – генеративные –
передаются следующим поколениям; мутации
в любых других клетках организма –
соматические – наследуются только
дочерними клетками и оказывают воздействие
лишь на тот организм, в котором возникли.
Ядерные
мутации затрагивают хромосомы ядра,
цитоплазматические – генетический
материал, заключенный в цитоплазматических
органоидах клетки – митохондриях,
пластидах.
В
зависимости от характера изменений в
генетическом материале различают
точечные мутации, геномные мутации и
хромосомные аберрации (перестройки).
Точечные мутации представляют собой
результат изменения последовательности
нуклеотидов в молекуле ДНК, являющейся
носителем генетической информации и
связаны с добавлением, выпадением или
перестановкой оснований в ДНК. Геномные
мутации связаны с изменением числа
хромосом в клетке, кратным одинарному
набору хромосом, а также увеличением
или уменьшением числа отдельных хромосом.
Радиоактивные
вещества могут воздействовать на
организм человека внешне и внутренне.
Внешнее облучение характеризуется
воздействием ионизирующего излучения
извне и обусловлено различной проникающей
способностью частиц. Внутреннее облучение
связано с попаданием радиоактивного
вещества внутрь человеческого организма
с пищей, с вдыхаемым воздухом или через
открытую рану.
Воздействие
радиоактивного излучения на организм
человека зависит от многих факторов и
определяется:
Скоростью радиоактивного распада
радионуклида;
Скоростью выведения РВ из организма;
Типом радиоактивного излучения;
Острые
последствия проявляются в первые
несколько дней (недель) после облучения.
Отдаленные последствия – последствия,
которые развиваются не сразу после
облучения, а спустя некоторое время.
Острая
лучевая болезнь возникает после
тотального однократного внешнего
равномерного облучения. Между величиной
поглощенной дозы в организме и средней
продолжительностью жизни существует
строгая зависимость.
При
воздействии ионизирующего излучения
в дозах, не вызывающих острую или
хроническую лучевую болезнь, происходит
изменениях в основных регуляторных
системах организма и функциональные
изменения деятельности основных
физиологических систем чаще всего носят
полисиндромный характер. Это проявляется
в развитии донозологических состояний,
переходящих с ростом дозы к клинической
патологии.
В
структуре неврологической заболеваемости
особое место занимает синдром вегетативной
дистонии, повышения тревожности как
устойчивой личностной черты, отмечается
ускорение перехода психофизиологических
расстройств в стойкие психосоматические.
При
дополнительном воздействии других
неблагоприятных факторов существует
вероятность роста общесоматических
заболеваний. Радиационный фактор
выступает лишь как одно из условий этого
роста.
Любому школьнику знакомо такое слово, как мутаген. Это изучается еще в курсе биологии средней школы. Но при этом не все взрослые люди смогут легко ответить, что же означает это слово, не говоря уж о наличии общего представления о том, как мутагены могут воздействовать на различные живые организмы. Поэтому будет полезно рассказать о них поподробнее, устраняя данный пробел в знаниях.
Что такое мутация?
Прежде чем войти в тему мутагенов, необходимо объяснить, что такое мутация. В генетике мутация — это постоянное и наследуемое изменение последовательности нуклеотидов в молекуле генетического материала: ДНК.
Вся информация, необходимая для развития и контроля организма, находится в его генах, которые физически расположены в хромосомах. Хромосомы состоят из длинной молекулы ДНК.
Как правило, мутации влияют на функцию гена, и он может потерять или изменить свою функцию..
Поскольку изменение последовательности ДНК затрагивает все копии белков, определенные мутации могут быть чрезвычайно токсичными для клетки или организма в целом.
Мутации могут возникать в разных масштабах у организмов. Точечные мутации влияют на одно основание в ДНК, тогда как мутации более крупного масштаба могут затрагивать целые области хромосомы..
Всегда ли мутации смертельны??
Неправильно думать, что мутация всегда приводит к возникновению заболеваний или патологических состояний организма, который ее переносит. На самом деле, есть мутации, которые не изменяют последовательность белков. Если читатель хочет лучше понять причину этого факта, он может прочитать о вырожденности генетического кода.
На самом деле, в свете биологической эволюции, состояние непременное условие для того, чтобы произошли изменения в популяции, существует наличие вариаций. Эта вариация возникает из-за двух основных механизмов: мутации и рекомбинации.
Таким образом, в контексте дарвиновской эволюции необходимо, чтобы в популяции были варианты, и чтобы эти варианты ассоциировались с большей биологической адаптацией..
Как возникают мутации?
Мутации могут возникать спонтанно или могут быть вызваны. Собственная химическая нестабильность азотистых оснований может быть преобразована в мутации, но с очень низкой частотой.
Частой причиной спонтанных точечных мутаций является дезаминирование цитозина до урацила в двойной спирали ДНК. Процесс репликации этой цепи приводит к дочернему мутанту, где исходная пара GC была заменена на пару AT..
Хотя репликация ДНК — это событие, которое происходит с удивительной точностью, оно не является совершенным во всей полноте. Ошибки в репликации ДНК также приводят к появлению спонтанных мутаций.
Кроме того, естественное воздействие на организм определенных факторов окружающей среды приводит к появлению мутаций. Среди этих факторов мы имеем ультрафиолетовое излучение, ионизирующее излучение, различные химические вещества, среди других.
Эти факторы являются мутагенными. Далее мы опишем классификацию этих агентов, как они действуют и их последствия в клетке.
Хромосомные мутации
Генные мутации влияют на один ген, большие изменения могут менять структуру всей хромосомы. Хромосомные и геномные мутации чаще связаны с нарушением процессов мейоза: конъюгации, кроссинговера и расхождения хромосом во время анафазы. Они происходят на клеточном уровне организации живого. Мутация хромосом связана с разрывами хромосомы, которые со временем могут восстанавливаться, так как в клетке есть специальные механизмы репарации. Но восстановление исходного строения хромосом происходит не всегда.
С хромосомными аномалиями связаны многие виды рака человека, поэтому они имеют большую клиническую значимость. Мы кратко рассмотрим возможные изменения в хромосомах, которые суммированы в диаграмме.
Делеция (исключение)
Делеция – это потеря части хромосомы. Теряться могут небольшие участки и большие, в середине хромосомы и по её краям. При потере большого количества хромосомы организм может погибнуть. Делецией вызван синдром кошачьего крика у детей, при этом теряется большая часть 5 хромосомы. Обычно это приводит к ранней смерти, хотя некоторые пострадавшие демонстрируют нормальную продолжительность жизни. Мутация имеет различные дефекты, в том числе проблемы с дыханием.
Дупликация (дублирование)
Удвоение участка хромосомы может быть или не быть причиной фенотипических изменений. Эффект зависит от места положения дублирования. Дублирование в области, находящейхся за пределами генов, не приводит ни к каким последствиям. Если дублирование происходит рядом с исходным участком, его называют тандемным. Тондемные дубликации сыграли важную роль в эволюции семейств родственных генов, таких как глобины, кодирующие гемоглобин.
Инверсии
Инверсии происходят, когда сегмент хромосомы ломается в двух местах, а участок между разломами переворачивается и в таком виде возвращается на своё место. Если разрыв происходит не внутри гена, то инверсии не оказывают влияния на фенотип. Хотя все люди имеют одинаковый геном, порядок генов в них разный из-за инверсий, которые происходят в семьях.
Транслокации
При транслокации кусок одной хромосомы отламывается и присоединяется к другой негомологичной хромосоме. Транслокации сложны, они могут вызвать проблемы образования половых клеток. Во время мейоза транслокационные гомологичные хромосомы не могут осуществить конъюгацию из-за появившихся различий между ними.
Транслокации могут перемещать гены из одной хромосомы в другую и менять их выраженность. Две формы лейкемии связаны с транслокациями, которые перемещают онкогены в участки хромосом, где они выражаются в неадекватные кровяные тельца.
Химический мутагенез
Ультрафиолет сильно поглощается тканями и вызывает мутации лишь в поверхностно расположенных клетках многоклеточных животных, однако на одноклеточных он действует эффективно. Мутагенное действие ультрафиолета было установлено в 1931 г. А.Н.Промптовым.
Другими физическими мутагенами являются частицы разной природы, имеющие высокую энергию: это альфа- и бета-излучения радиоактивных веществ и нейтронное излучение.
В случае прямого влияния на ДНК основную роль играют два параметра: величина энергии воздействующей частицы и способность биологического материала поглощать эту энергию.
Повреждения ДНК могут быть двух типов: двунитевые и однонитевые разрывы.
Мутации может вызывать также высокая или низкая температура. В 1928 г. Меллер показал, что повышение температуры на 10 градусов по С повышает частоту мутаций у дрозофил в 2-3 раза.
Зная способ действия этих мутагенов, можно было предположить, что они должны действовать на ДНК любых организмов.
И действительно, вскоре было обнаружено, что например, рентгеновские лучи вызывают мутации у самых разных животных, растений и микроорганизмов.
Выяснено, что мутации, вызванные излучениями, могут затрагивать любые признаки организма, так как квант излучения или частица с высокой энергией чисто случайно может повредить любой участок ДНК. Число возникающих мутаций тем больше, чем выше интенсивность излучения, то есть чем больше квантов или частиц попало в клетку в единицу времени.
Также было показано, что физические факторы вызывают те же мутации, которые возникают и при спонтанном мутагенезе.
У высших живых существ есть вещества, ослабляющие действие излучения фотопротекторы, а многие растения содержат алкалоиды и кумарины, они усиливают процессы, вызванные радиацией и эти вещества опасны для животных.
Физические мутагены и их действие сильно зависит от предварительной эволюции организма.
К постоянно действующим мутагенам виды выработали устойчивость. Физический мутагенез может не регистрироваться из-за быстрой гибели мутантных организмов.
К химическим мутагенам относятся многие химические соединения самого разнообразного строения. Наибольшую мутагенную активность проявляют различные алкилирующие соединения, а также нитрозосоединения, некоторые антибиотики, обладающие противоопухолевой активностью.
Химические мутагены делят на мутагены прямого действия (соединения, реакционная способность которых достаточна для химической модификации ДНК, РНК и некоторых белков), и мутагены непрямого действия (промутагены — вещества, которые сами по себе инертны, но превращаются в организме в мутагены, в основном в результате ферментативного окисления).
Мишенью действия мутагенов в клетке являются ДНК и некоторые белки.
ссылки
- Альбертс Б., Брей Д., Хопкин К., Джонсон А.Д., Льюис Дж., Рафф М., … и Уолтер П. (2015). Основная клеточная биология. Гирлянда Наука.
- Купер Дж. М. и Хаусман Р. Э. (2000). Клетка: Молекулярный подход. Sinauer Associates.
- Curtis, H. & Barnes, N.S. (1994). Приглашение к биологии. Macmillan.
- Карп Г. (2009). Клеточная и молекулярная биология: концепции и эксперименты. Джон Вили и сыновья.
- Lodish, H., Berk, A., Darnell, J.E., Kaiser, C.A., Krieger, M., Scott, M.P., … & Matsudaira, P. (2008). Молекулярно-клеточная биология. Macmillan.
- Singer B. & Kusmierek, J. T. (1982). Химический мутагенез. Ежегодный обзор биохимии, 51(1), 655-691.
- Voet, D. & Voet, J. G. (2006). биохимия. Ed. Panamericana Medical.
У человека была измерена частота мутаций
В течение многих лет мы могли оценивать уровень мутаций человека только при помощи косвенных методов. Первая попытка их подсчёта предпринята в 1930 г. Дж. Б. С. Холдейном в работе по гемофилии. Теперь с помощью быстрого и дешёвого способа секвенирования целых геномов мы можем непосредственно измерять частоту мутаций человека, сравнивая геномы родителей и потомства.
Недавнее исследование семьи из Исландии говорит о том, что у каждого человека в течение жизни происходит примерно 70 мутаций и 76% из них абсолютно новые. Они наблюдаются в отцовском геноме, и их количество увеличивается с возрастом отца. Другие методы, включая оригинальный метод Холдейна, нашли причину отцовского уклона. Вероятнее всего это отражение популяции стволовых клеток, которые дают начало сперматозоидам, мутирующим с возрастом.
Вставки и удаления не менее 50 оснований встречаются с частотой примерно от 1/5 до 1/10 новых мутаций. Удаления и дублирования происходят гораздо медленнее (1 новая мутация на 42 новорождённых). Некоторые из них – мобильные генетические элементы, засоряющие наш геном, могут активно передвигаться. Скорость вставки мобильного элемента равна 1 на 20 родов.
Если бы со временем в генах не происходило никаких изменений, то эволюции бы не случилось. Однако слишком много изменений вредны для особи. Нужно соблюдение хрупкого баланса между количеством новых вариаций, возникающих у всего вида, и здоровьем отдельных особей.